

Introduction to Medical Image Registration

Sailesh Conjeti

Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany

sailesh.conjeti@tum.de

Partially adapted from slides by:

- 1. Prof. Nassir Navab (TUM) and Christian Wachinger (MIT) on Intensity based Image Registration and Feature based Registration.
 - 2. Prof. Dr. Philippe Cattin, University of Basel, Medical Image Registration

Brief Introduction

Sailesh Conjeti

- Currently, Doctoral Student at the Chair for Computer Aided Medical Procedures, Technische Universität München, Germany, under Prof. Nassir Navab and Dr. Amin Katouzian.
- Attended School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India from 2012-14.
- Graduated from Birla Institute of Technology and Science, Pilani Class of 2012.
- Research Interests: Machine Learning, Medical Image Computing, Image Registration, Biomedical Signal Processing and Wearable Computing.

Please feel free to stop me if you have any questions.

What is the fuss all about? Lets Consider an imaginary case.

How to align these?

The Solution

Registered (deformed) image

The Result

Reference (fixed) image

Source (float) image

Image Registration

So, lets define Image Registration:

Aligning one image to another, so that they share the same coordinate system.

Some Terminology:

Given:

- Reference or Target Image: Fixed during registration.
- Floating or Sensed Image: It is spatially warped to align with reference image.

Task:

Find a reasonable transformation T, such that the transformed image is similar to the reference image.

Overlap Domain: Pixels / Voxels overlapping between the two images.

AMB

Courtesy: Philippe Cattin

What can you expect from Today's lecture?

- Clinical Need for Image Registration.
- Monomodal Image Registration
- Multimodal Image Registration
- Transformations (Linear)
- Intensity based registration
 - Monomodal (SSD and NCC)
 - Multimodal (Mutual Information)
- Feature based Registration
- Group wise Image Registration
- Non-rigid Registration

AM

Crum, W. R., Hartkens, T., & Hill, D. L. G. (2014). Nonrigid image registration: theory and practice.

Need for Image Registration

Possible Scenarios – CT to MR Registration

3D to 3D Anatomical Registration

Possible Scenarios – PET to MR Registration

Anatomical to Functional Image Registration

Possible Scenarios – C-arm to CT Registration

2D to 3D Image Registration

Possible Scenarios – Intra-operative Navigation

Courtesy: Nassir Navab

2D to 3D Multimodal Image Registration

Possible Scenarios – Surgical Planning and Intra-op Navigation

Courtesy: CSAIL, MIT

3D to 3D Multimodal Image Registration

Types of Registration

Dimensionality

 2D – 2D, 2D – 3D, 3D – 3D, 2D – 4D and so on.

Modalities

Monomodal, Multimodal

Subject / Object

- Intra-subject
- Inter-subject Atlas Registration

Transformations

• Rigid, Affine, Projective, Non-Linear (Deformable)

Registration Basis

• Extrinsic (Marker based), Intrinsic

Number of Images

• Pairwise, Group-wise

Image Registration

Courtesy: Nassir Navab, Christian Wachinger

Image Registration – Close the loop

Courtesy: Nassir Navab, Christian Wachinger

Registration – Close the loop

- For each iteration, compute similarity function Sim(X,T(Y)), using full image content.
- *T*(*Y*) requires interpolation to match resolution and scale of *X*.
- Maximize Sim(X,T(Y)), by performing optimization on transformation parameters.

- Intensity based Registration

 utilizing full image content.
- Define transformation T on one of the image volumes.
- Compare X and T(Y) using full image content.
- Reiterate estimate of T, till convergence.

Registering digitally reconstructed radiograph with X-Ray image.

Spatial Transformations

Introduction to Medical Image Registration

Spatial Transformations

Mathematical Formulation

Consider image I_s(i, j) to be aligned to target image I_T(x, y). We formulate image registration as:

$$I_s(i,j) \sim I_t\left(x = f_x(i,j), y = f_y(i,j)\right)$$

• We can express this coordinate transformation as:

$$\begin{pmatrix} x \\ y \end{pmatrix} = f(i, j, \Theta) = \begin{pmatrix} f_x(i, j; \Theta) \\ f_y(i, j; \Theta) \end{pmatrix}$$

Transformation Function evaluated at each coordinate (i, j)

Translation

 Image is translated in the coordinate space. This transformation can be formulated as:

$$x = i + a$$

$$y = j + b$$
Transformation Function
Homogenous Coordinates
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \\ 1 \end{bmatrix}$$
Humble State of the second state of the se

Rigid Transformation

- Involves translation and rotation.
- This can be formulated as: translation of (a, b) and rotation of θ counterclockwise about origin.

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta & a \\ \sin \theta & -\cos \theta & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \\ 1 \end{bmatrix}$$

Similarity and Affine Transformation

• Lets introduce further isotropic scaling with a factor of *S* (called Similarity Transformation)

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} S \cos \theta & S \sin \theta & a \\ S \sin \theta & -S \cos \theta & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \\ 1 \end{bmatrix}$$

 If we make the scaling anisotropic, we introduce shear effect. Such a transformation is called Affine Transformation.

$$\begin{array}{c|c} \bigstar \\ \hline \end{array} \\ \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} A \cos \theta & B \sin \theta & a \\ C \sin \theta & -D \cos \theta & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \\ 1 \end{bmatrix}$$

Projective Transformation

- General Linear Transformation (Planar Homography)
- Parallel lines may not remain parallel.
- Models rigid motion in and out of the plane.

• Formulated as

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} A & B & C \\ D & E & F \\ G & H & 1 \end{bmatrix} \begin{bmatrix} i \\ j \\ 1 \end{bmatrix}$$

3D Rigid-body Transformations

- A 3D rigid body transform is defined by:
 - 3 translations in X, Y & Z directions
 - 3 rotations about X, Y & Z axes
- The order of the operations matters

Simple Interpolation

• What if after transformation the image coordinates are not ______f3____integers?

- Nearest neighbour
 - Take the value of the closest voxel
- Tri-linear
 - Just a weighted average of the neighbouring voxels
 - $f_5 = f_1 x_2 + f_2 x_1$

$$- f_6 = f_3 x_2 + f_4 x_1$$

$$- f_7 = f_5 y_2 + f_6 y_1$$

Problem: Transformation

• Given an image:

- **Task:** Apply 45 degree counter clockwise rotation and translate by (1,1). Scale by a factor of 1.5. Consider Nearest Neighbour interpolation. Zero Pad if necessary.
- Find the value of coordinate (4,2) in the transformed image.
- Step 1: Construct the transformation matrix.

•
$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} S\cos\theta & S\sin\theta & a \\ S\sin\theta & -S\cos\theta & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \\ 1 \end{bmatrix} = \begin{bmatrix} 1.5\cos\pi/4 & 1.5\sin\pi/4 & 1 \\ 1.5\sin\pi/4 & -1.5\cos\pi/4 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \\ 1 \end{bmatrix}$$

Problem: Transformation

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1.06 & 1.06 & 1 \\ 1.06 & -1.06 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i \\ j \\ 1 \end{bmatrix}$$

• Step 2: Calculate inverse transformation.

$$\begin{bmatrix} i \\ j \\ 1 \end{bmatrix} = \begin{bmatrix} 0.4717 & 0.4717 & -0.9434 \\ 0.4717 & -0.4717 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

• Step 3: For
$$(x, y) = (4, 2)$$
, find (i, j) .
 $(i, j) = (1.88, 0.94)$

• Step 4: Perform nearest neighbour interpolation. $I(i, j) \sim I(2, 1) = 2.$

Take Home: Try Tri-linear Interpolation for the same point.

Finding the transformation

Rigid transform:

global patient repositioning (intra-subject)

Similarity transform: • shape analysis

- Affine transform: • first step in no
 - first step in non-linear registration

Courtesy: Niels Chr. Overgaard

Marker Based – Extrinsic – Results in 3D point sets available for registration.

Invasive Stereotaxy

Non-invasive Fiducial Markers

- Intrinsic Registration basis uses information available within the images to estimate the transformation.
- Landmark Based establish point-wise correspondences.

- Segmented Surfaces / Objects can be used for registration.
- Surface to surface registration

Feature Based Registration

- Point Set to Point Set Registration with correspondences
- Point Set to Point Set Registration without correspondences

Surface to Point Set Registration

Surface to Surface Registration

Intensity based Registration

- Depending on the intensity relationship between the two modalities, similarity measures can be
 - Monomodal (for registering same modalities)
 - Multimodal (for registering different modalities)

Mappings

Introduction to Medical Image Registration

Lets take a closer look: Intensity based Similarity Measures

• Can be used for registering CT to CT or MR to MR.

Understanding behaviour of SSD

Problem: Understanding SAD Similarity Function Behaviour

• Given an Target image I =

- **Task 1:** Plot the SAD similarity function plot for X-translation of -2 to + 2 pixels. Zero Pad if necessary. Perform Nearest Neighbour Interpolation if necessary.
- **Task 2:** Under a different scanner, the image illumination is halved. Perform similar SSD similarity function plot and investigate whether SAD is suitable for such scenarios? What should be the steps to overcome this?

Problem: Understanding SAD Similarity Function Behaviour

0	1	0
2	4	0
0	1	0

0	0.5	0
1	2	0
0	0.5	0

Task 2 is take home.

Monomodal Similarity Measures

- SSD, SAD are prone to errors when illumination changes, we need a measure which takes this into account.
- Normalized Cross Correlation looser dependence on intensities.

Behaviour of NCC Similarity Function

Behaviour of NCC:

	0.96	-0.40	-0.16	-0.39	0.19
ł	-0.05	0.75	-0.47	0.51	0.72
1	-0.18	-0.39	0.73	0.15	-0.75
	-0.27	0.49	0.16	0.79	0.21
	0.08	0.50	-0.45	0.28	0.99

Gives satisfying results (for small image motions)

The Joint Histogram NCC Optimum SSD Optimum Y=ax+b Y=x Intensity of Transformed Target y

Intensity of Reference x

Multi-modal Image Registration

More complex intensity relationships, so direct application of SSD or SAD would not work.

Computed tomography (CT), shows bony structures – very accurate

MRI image volume: soft tissue – show presence of a tumour SPECT – MR Registration: Patient oriented differently in different

Patient oriented differently in different scanner systems. Not easy to find landmarks.

NCC would not work in this case.

Information Theoretic Approach towards Registration

Constructing Image Histograms: Treat image intensities as random variables.

CAMP

Joint Histogram

Joint Histogram

Lets see Joint Histogram Construction:

with intensities a and b to occur in the two images.

Joint Histogram for Multimodal Images

How do we characterize it?

The structure of the joint histogram has to be characterized.

We can use: Joint Shannon Entropy.

Joint Shannon entropy reaches an optimum at highly structured (clustered) histogram.

$$H(A,B) = -\sum_{a} \sum_{b} p(a,b) \log p(a,b)$$

Interpretation Entropy of Joint Histogram

Overlap Problem with Joint Entropy

- Joint entropy is calculated in overlapping portions of the image. Consider a case like shown alongside (Air overlaps).
- Joint entropy reaches a maximum and optimisation will be struck at a local optima.
- A registration algorithm that minimises the *joint entropy* will thus tend to maximise the amount of air and not necessarily register.
- What is the solution?
- Use Mutual Information instead.

Mutual Information and Normalized MI

$$I(A,B) = H(A) + H(B) - H(A,B)$$
$$= \sum_{a} \sum_{b} p(a,b) \log \frac{p(a,b)}{p(a)p(b)}$$

- In maximising MI we seek for solutions that have high marginal entropies and a low joint entropy
- MI is maximised at the optimal alignment and can be thought of as a measure of how well one image explains the other.
- *MI* still has the influence of overlap. To further reduce it, we may use, normalized mutual information.

$$Y(A,B) = \frac{H(A) + H(B)}{H(A,B)}$$

CAMP

Choosing Similarity Measure

Mappings

multi-moda

Pairwise and Group-wise Registration

- Depending on the number of images being registered.
- Pairwise: Aligning 2 images. •
- Group-wise: Multiple Images. Used for Mosaicking, Population Studies, Atlas Construction.

Before Alignment

Courtesy: Christian Wachinger

Limitations of Rigid Registration

6

Is the tumour in the lungs or the stomach? Looks plausible; but how could you be sure?

Courtesy: Michael Brady

Non-Rigid Transformation Model

• Needed for inter-subject registration and distortion correction Rigid has only 6 DOF—three shifts and three angles

Important non-rigid transformations

- Similarity: 7 DOF
- Affine: 12 DOF
- Curved: Typically DOF = 100 to 1000.
- Non-linear i.e. no matrix representation
- Many Different Parameterizations e.g.
 - General diffeomorphisms (e.g. fluid models)
 - Spline parameterizations (b-splines, thin-plate splines)
 - Fourier parameterizations (e.g. SPM)

Nonrigid Transformations can be very complex!

[Thompson, 1996] Courtesy: Xenious Papademetris

Affine vs Non-Rigid – A Look at the transformation

Affine – 12 parameters

Non-Rigid ~ 2000 parameters Courtesy: Xenious Papademetris

Affine vs Non-Rigid

Average Anatomical Images from 10 Subjects displayed at 1.5x1.5x1.5 mm

Courtesy: Xenious Papademetris

Where to use Non Rigid Deformation?

Non-rigid transformations:

- Tissue motion (cardiac cycle/respiratory motion)
- Deformation compensation (intra-operative, soft tissue)
- Longitudinal tissue changes (e.g., tumor growth)
- Inter-subject registration

Courtesy: Niels Chr. Overgaard

Other Interesting Topics In Registration:

• Non rigid Image Registration

McInerney, T., & Terzopoulos, D. (1996). Deformable models in medical image analysis: a survey. *Medical image analysis*, 1(2), 91-108.

Sotiras, A., Davatzikos, C., & Paragios, N. (2013). Deformable medical image registration: A survey. *Medical Imaging, IEEE Transactions on*, *32*(7), 1153-1190.

Regularization

Fischer, B., & Modersitzki, J. (2003). Curvature based image registration. *Journal of Mathematical Imaging and Vision*, *18*(1), 81-85.

Sorzano, C. O., Thévenaz, P., & Unser, M. (2005). Elastic registration of biological images using vector-spline regularization. *Biomedical Engineering, IEEE Transactions on*, *52*(4), 652-663.

Optimization in Registration

Klein, S., Staring, M., & Pluim, J. P. (2007). Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. *Image Processing, IEEE Transactions on*, *16*(12), 2879-2890.

Image Interpolation

Lehmann, T. M., Gonner, C., & Spitzer, K. (1999). Survey: Interpolation methods in medical image processing. *Medical Imaging, IEEE Transactions on, 18*(11), 1049-1075.

Modality Invariance in Registration

Wachinger, C., & Navab, N. (2012). Entropy and Laplacian images: Structural representations for multi-modal registration. *Medical Image Analysis*, *16*(1), 1-17.

Heinrich, M. P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F. V., Brady, M., & Schnabel, J. A. (2012). MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration. *Medical Image Analysis*, *16*(7), 1423-1435.